A Recontipurable Testhed FEnviromnent for Spacecrali Antonomy

.

Jefhey Dicesiadecki Abhinandan Jain
Jet Propulsion Laboratory /Califormia Tnstitute of 'Pechimology
4800 Oak Grove rvive M/S 198 326G, Pasadena, CA 91109 USA

Abstract

A ey goal of NASA’s New Mdlewvwivie Peogeain (NMP) s the deoclopmenl of Lechnology
Jorincrcasing spuccerafl on-board aalowoney, Aclieeeuient of Uis objectioe vequires e deoclopient
of o new closs of ground- based aulononry festbeds (fral can cuable e low-cost and vapid desigu, tesd

and tnlegration of he spacecralt aulonomy flight softwaye.

This puper descrdes the developmend of an Aalonomy Testhed Puaciaonment (NVBY) for Hie
NMP Decp Spaee 1 comel fuslevoid vendezeous nossion. This somulation {estbed Tas been designed
lo cnable vapid desogie of [light weodales, cavly ddevliication of peformaec and desigo problems,
vesolulion of duleqralion dissucs, and orough geoand desting Jor vedaciny wdssion-rosh. AT s
sivnunlalion vequircmenls spayc a wide vange of cuginecring plolforms, fonctional aud fidelilty wiodl-
cls, [oilure wmodes, lesl seenavios, and davalions. The flight soltware snodales wnder developmend
include altilude conlvol subsyslem, vemole agend, aulonomous woavigalion, aud [Lghl systeins con
lrol. Convenlionally, such testbed functionality has becu el by e copensioe and Tne consuntug
deoclopment of wealtiple specializod lestheds, (o contrast, the AVBE destbed has been desigued to
e veconfigarable for wealliple wser deoclopment and Tesd weeds. The ATBYS software aodl also be

integialed will the suppord cquipmeend Jor hardware-in-lhe-loop Lests aud system ool inlegralion

The NP spaceciafl sinonlator ducludes o bigh fideldy veal- tioe dynaneees sinealalion pucls
age dulcgraled will stnodalion wodels Jor scocial of e havidware deececs and ooy faces on e
spaccerafl. The lesthed tucorporales caislong tn-hoase and icd-pacty software, inlegealed aidlin an
objecl-ovienled avehileclure. This design enalles casicr moidaocability and asability, and perhops
sost siguificantly this flecible design is gearved Lo haudle conlinual coolulion i wodel voquireinenls,
Junctionalily and fidelilty. The sinndalion duleclaces ave lighly configarable fo allow swapping
and oul of hardware os yecded. The Testbed lhas beesc dnstrancenled from e stort Lo provide o Tigh
degroe of visibility inlo e stmalation stalus with capabitities to peck /poke feleckpoinl frcsanec moded
states, and includes some graphicol wser tulevlaces as well.

T Introduction

A Yev poal ol the Nean Mdlcnndun Pyograne (N AP) s the developient ol tecdmaolopy for inereasing,
spacectalton-hoard autonomy [11. Achievement (- this objective wilbrequire the de velopment ol a
new clas s of prownd-bascd antonomy testheds thatcan e naible the Towscost and rapid desipn, test
and mtegaat ool the radically new autonomouns systen flight soltwa e, This paper desenbes the
the developme ntol suel i aew class of ground bas ed autonoay tosthed (e Awtononny Testbed

Pouoirowmendt (AT1315) that cionne enable the low-costand yapid design, test and intepration of

autonomy spacecralt Mipght software. This ATBE architeclure is being, designed Lo accommodalte
the Tarpe vaniety of autonomy ght software functions that need to be tested and validated belore
Qight. Tn particular, the architectine enables: rapid design of Bight modules, carly identification of
performance and design problems, resolution of integration issues, and thorough ground testing, o
reducing mission-risk. The desipn and implementation of AT s heing, carried out for the New

Millenmiumin Deep Space 1 amission [2].

AT s simulation regquitements span a wide ranpe of engineering, platforms, hardwa e and
enviromnental models, failure injection capability, test scenarios ele Traditionally such a vanpe ol
testhed funetionality has heen met by the expensive and time consiming, development of multiple
specialized testbeds, Tncontrast, the ATTBE testbed s being, designed to be reconfiguiable Lo mieel

the

imultiple user development. and test needs ineluding;:

¢ use of the testbed by all of the various autonomy flight software sub systens for code devel
opmient and verification.

¢ dillerent interfaces and fidelity levels to support the vaciety of testing, requirenients,

¢ usc ol e testhed across deslop worksta dons o al e hardware - the-loop enviromments
for Might scftw: o Lesbing,

¢ casy evolution and maintenance of the simulation functionality to accon nodate the continun

change in model requirements, funetionality, fidelity and interfaces.

An object-oriented simulation architectuwe has been designed to handle models ranging,

fron timecritical models such as spacecrall dynanics simulators, analytical models for hardware

devices, interfaces and electronics, and event-driven instrament simulators, T'he base model elass

has heen desipned to provide a hiph degree of instromentation and visibility into the internals of

the sinnilator. Moreover, the testbed supports the ability to turn onand ofl models and asily
change the data flow of the simmlation vaviables. "The stractae of the model database is highly
modular o allow the easy change and replacement of selected parts of the siimulator withont glohal
inpact on the overall sinmlator. Tndeed this aspeet of the architecture allows Lhe casy swilching,

between software simulations of devices and real test hindware in the loop as needed. The AT

spacecralt simulator includes the Dsnery high fidelity real-thme dynamics shmulation package wilh
simulation models for several of the spacecralt havdware devices, The testbed incorporates several

tools which include in house a as commercia software.

This paper describes the poals, current statu
5 for the New Millenniuim Deep Space |

and Tutwe plans for the developinent of

2 Architceture o 1l A" B9 SHaceeraft Si latm

Reconfigurability has been a key driving requitement for the design of the ATDE architeclure.
Reconfipmrability comes in several diflerent flavors dviven by diflerent development and test neads,
Some of these drivars for the A'TPB T architecture ane:

Concurrent engineering, s/w developnent process: The flight software development s fol
lowing, a concurrent engineering, developiment. process. ‘T'he evalotion ol the AT need

0
al all times support Might software development and test from the carly to the more mature
phases. The build-a-little test-a-litUe stratepy also requives the architecture to be fexible and
adaptable cnongh 1o support continual evolution of the simulation nodels and interfaces over
the developiment period.

~ al.iple platform developient: The most mature testbed enviromment for system Tevel and
Might software testing will include hardware in the oop components as well as realistic flipht.-
like interfaces to AT, However this testhed will come on Tine only Tate in the sollware
developiment. process, and its use will be primarily for system level testing. So AT 0
being designed 1o run under different platforms and environments ranging, from Unix desklop
workstations to VxWorks/68010 real-tine environments. Consequently, there are a fage
number of configirations of ATBIS available (o meel the siimulation needs of {light soltware
developers. The choice of enviromnent is up to the flight software developer and is dictated
by the development and test needs of the day. Support and developinent of ATBE o the

multiple platforms will continue all the way until Taunch,

Mu iple interfaces: Theinterfaces hetween ATBE and the Hight software for closed-loop testivg
Tiave been kept lexible to acconmiodate different fidelity Tevels, ‘Thus the siniplest interface for
the 1663 bus interlace treats it as merely a transport Tayer and uses a high-level inter- process
commumication mechanism to close the Toop bhetween the Hight soltware and the shmalation.
Higher fidelity versions of this inter face provide more detailed software sinmlations ol the 16463
behavior, as well as actual interfaces to commiercial and flight-like 16563 hardware. The ability
to seleet the appropriate level of fidelity provides many options for flight software developers

and cnables significantly larger amounts of concurrent testing,

Shmplified simmlations: During, the development process, flight software subsystens such as the
alttitude ¢

mitrol system [3], autononous navigation [4], ov the flight systein control, ete., do
not have a need for the full simulation capability. Indeed, there are definite advantapes to
simplifying and tailoring the shnulation environment to the needs of the specilic subsystenm. To
support this need, the AT1BE architecture has been designed to support diflerent stmulation
configuralions and interlaces that are casily selectable at ran-time. For instance, the attitude
control systen developers prefer to carry ont initial performance and desipn Lests for the
run (he closed-loop simmlation while bypassing, the 1653, The “with bus™ or “hypassed bus”

i

simulations are run-time sclectable in the AP architecture.

Software developiment: The vapid pace of the sofltware development and the continual change

i the simulation model

hnposes sipnilicant. challenges on the software development. and
comflipuration management process. On the one hand, the flight software engineers have to
he able to aceess different versions of A'PRIS campatible with (heir development needs, On
the other Tiand, the ATTE software engineers internally need to he able to make changes to

2.1 Architecture Design

thie diflerent picees of AT without being efleeted by or effecting o her developers” efforts.
The size and build time for the software make this a non-t1ivial but critical housckeeping,
task. "The ATT131 0 team has developed the YAM software development p rocess (deseribed in
Scetion b) Lo address and solve this problen.

Anotherimportant aspect. of the AT architecture is the high performance of t he eritical
real-time core of e simulator in addition to the several event-driven simulationimodcels. Also, a
mini-cnivironment compatible with the ATBE architecture has been developed to suppor C the unit
developmentand test of sirnulationmodels. This miini-enwviromnent not only provides a convenient
w ay for miodel builders to develop and test the models, but also makes it casy t o migrate the
1mio dules into the ATBYS environment for integration with the rest of the shimulation.

The architecture design has at the outset emphasized a tools based app roach. Given the
slow maturation rates of new so llware, it was highly desirable to inherit and use existing and mature
tools to form the hulwark of the AT architecture and focus the AT software developinent in
knitting together these tools and implementing new feature into a usable flight software developiment.
andiest enviromment. The architecture is also being designed for reuse inmissions that follow 1)S1.

2.1 Architecture Design

The ST spaceeraft simulator models are roughly categorized as those belonging to the real-time
core nd others that are event-driven non-real-time models in order to meet the eritical real-time
perforynance requirements oo the siimulation software. Real- time models contain functions that are
¢ xceul ed every simulation heartheat while event- driven miodels do most ol their work in response
tocvenis 01" conmnands.

Real-time models include a module for propagating the spacect alt dynamics state (1 JARTS),
models for the various attitude control sensors and act uators @)snent nodel s), the interfaces to the
15653 bus, mo dels for device electronices interfaces e, D st Ll is a spacecrall dynamics sinilation
tool which includes a library of analytical models for actuator and senisor hardware devices typically
comim anded by attitude cont rol subsy stern flight software. Thiese models have continnous states,
and ar ¢ tied to the DAR TS dynamics compute engine. 1)shpenl will be deseribed inmore detail in
Section 4.

T'he event-driven inodels get exceuted only occasionally and 1 un as separateprocesses. The
diflerent processes in the simulator typically communicate via messa ges. At exarnple of aievent-
driveminodel is a scene generator which is used t o siimulate t he on-hoard camera. This model does
its work in response 1o a “lake picture” commnand fi 0111 {he flight software and may take several
minutes Lo create arimage.

The llip=)-level categorization and deconmpositionof Sill)-syst(Mlls intoreal-time, DsuEnnL and
cvent-driven miodels is illustrated in Figure 1, ‘The real-thne mo dels are implemented and inter-
connected using tie third-party tool ControlShell, {t o Real-"Time Timovations, Ine, CondrolShell
provides a C- -} base class for compon ends, and allow s for data-llow hetween co mipone nts, ach
component has all “exceut ¢” method, which is ca lled cach tick of the simulation. Corn ponenits also
have inputs and outpruls - cach tick they sel their outpouts biased on their inp uts. The order in

data
outpu

i

Bus msgs
STU msgs
RS

gﬁ@
T
Emm@mmm
§§§§

L1

3

.
t

g?g-
iy
Eﬁﬁ

ds1_fsw s P ds* sc !

gt

;

Vs

= fdvievr.mm o _ D0t 2 wide:s Pt
e |

Command SufferOns Bt Cony Helnp Zuffer: ve g 1
= = - —_ [S
f i
Yi 0.0 radsisericiv | ofrser = no0sa H
o r i

|

, |
; Sgnals megatstimated_wx
i

W cmenatstimated wy

M ovenatstimated wiz

Cargt. inection 1]

Tevices:

one " 57w oBus | wrces [ooov [ros | oge | oRsEw

Commane’s poke S4uy re failed

Status:

- wilda:mpoiam - 11S™ [Develapmentt i the/Releasesiathe

oaram_div omd_oorint oim yanhosidy Seemingl ootod oeec!

momine] Doy~ Fry
|
: —

! seu: tgmiel mominal Dowr ey
| Cmaminal mominal mominal momingl nomingl nominal sgminal mominil

vizes , i
i I — e valve
| Dad_image: m Tour Fey 2’

. —_— E——

. comm: HOmIRIT moming] Doun Ty
‘ e W L

SO oLy g

'

otitputls. Additionally, simulation time can be advanced, power Lo the device turnied 011 and off,
the device can be reset, ete. Thus, the developer can poke val ues for model inputs, advance a
step, peck at model outputs, run 7'el seripts 1o enab le unit testing., While these capabilitics are
available in thie full-up simulator, the mini enviromment 1ids the advargages that it involves less
code, is self-col)tziilled, and is faster and casicr to yun.

3 Simulation Modelsin the AT'BIC Simulator

The following is a briel Sttinary of the various Models inthe 1)S1simulator as showninfigare?,
and their functionality. Models for the fuel usage, power load, heaters, ete., are inclnded in the
device simulations as appropriate. Irailure modes are also built into the models.

RCS: Models for thrusters, the latch assembly, the propulsion drive clectronics (171)O1), fuel tank
DIGss]ic/lc) \$r-late/GollslIN ol cte.

Rate sensor: A rate sensor model with bandwidt) drift aud noise characteris (jes, and the A/D
and clectronics inter face.

Star tracker: A star tracker model with sky coverage model, and clectronic interface.

Sun sensor: A sun scnsor model with the 1 un her of heads, their characteristics, modes, and
clect ronics interface.

SEP gimbal: A model for the SEP gimbal actuator and encoder including its electronics interfaces.

SEP enginc: Al 1 analytical mmodel for thrust, {low rate, pressure, cte. for the SEP engine and its
control unit.

Scarlet ghimbals: A model {o1 cach of the Scarlet pancl ghinbal actuators and encoders including
their electronics interface.

Scarlet solay pancl power: A 11 analytical modelfor the power generated as a function of space-
crafl attitude and panel articulation.

Scarlet dynamics: A structural dynamics 1104 ¢l for the Scarlet solar panel flexibility with val-
ues for the assmned modes, the vibrational frequencies 411d the damping, ratios; thie current
st ruct ural dynamics iodaling estimate is b modes/pancl.

Spacceraft dynamics mode]: 1 his 1iodel will define the kinematics and multibody dynamics
1 iodel for the spaceeraft including inertias, Modes, hardware locations, etc.

On-board battery: Model for charge/discharge behavior of the on-board battery including an
clectronics interface for controlling its charging/discharging mode.

DU, PASM: Models for the power switching logic and interlaces.
SSR: Solid state recorder model with definition of interfaces and data transfer iechanisin,

Micas camera: A scene generator for generating image data as needed for antonomous navigation
and science experiments.

Sci en ceinsty win ent: Sirnulati on models of thiescience instruments.

Vector server: A real-thue module to supply carth /sun/asteroid vectors.

1663/1 773 bus: A model for the bus operation.

Teleem 0111111 A model for the SDST transponder , p ower amplifiers, wave guides and switches cbe.

Up/down link: Model channel integrity as a function of antenna carth-pointing angle.

4 1)snenl, Sporacecraft Dynamics Simulator

1)ARTS Shell (1)sHELL) is a multi-mission spacecraft sitnulator for development, test and verifica-
tion of flight software and hardware. 1)SHeLL is portable from desktop workstations to real-time,
hardwar c-in-the- loop simulation environments. 1 Istenn (Figure 4) integrates the 1ARTS S/C flex-
ible ultibody dynamics computational enig ine and a library of hardware models (for actuators,
sensors and motors) into a shmulation enviromunent that can be casily configured and interfaced
with flight software and hardware for various real-time and non real-time S/C simulation needs.
The main goals of the 1) sHELL enviromnent. arc: Lo sign ificantly reduce the software develop ment,

~

“En vimnm(nl
(gmllh rtr)

lmlnmm@ .
y PR
{camuras ele.) Cartlwn) :

' / - (rive elec.)
: Flight mrm‘m%m '
o

% and softwar
VARTS dynamics compute engine o
Teusable library Of hdw models : :

Well de fined API for Dshell & models
Portable from CAF to real-time env
Used throughout mission life-cycle

Fault
Tnjection

Figure 4:] IsHpLL architecture with] JAKTs and device models

required to interface dynamics simulators, actuiator and sensor hardware models and hardware-in-
the-loop devices; Lo eliminate the need for separate interface development Gfoils across the various

(analysis, software and rcal-time) testbeds within a project, and allow casy migration of modec
between testbeds; 1o allow the casy support of a variety of S/C configurations and models and sim-
ulation environments for all the phases of the mission; Lo permit the casy reuse and customization
of hardware models across various miissions,

The DARTS dynamics compute engine [b] implements a fast and eflicient spatial algebra
recursive algorithm [6, 7] for solving the dynamics of multi-hody tree-topology, flexible spaceeraft
systeins. Actuators are models that can iimpart a force on a body, such as a thruster. Sensors
provide data, such as a star tracker or gyroscope. Motors are used Lo articulate bodies which are
joined by various kinds of hinges (such as a pin, U-joint, gimbal, and others).

Dsneny’s library of reusable hardware models includes sensor and actuator devices such as
gyroscopes, thrusters, star-scanmers, cte., with standardized D-Tunction interfaces to DARTS and
the external simulation enviromnent, ‘T'he plug and play siimulation can be casily configured and
interfaced to flight software for algorithim development, as well as for test and integration. The
object-oriented model library includes extensive instrumentation for giving a user the high visibility
into the simulation necessary for eflfective use as a design, development and test tool. DSHELL is
in usc by several of NASA’s inter-planctary deep space missions including Galileo, Cassini, Mars

athfinder and New Milletmiuim Deep Space 1.

Data for Dsnenl models consists of paramcters, discrete states, continuous states, com-
mands, and outputs. Paramcters are values that are set while reading a configuration script upon
startup, but are not changeable by the wodel itself. Discrete states are initialized at startup, and
may be modified by the model and the user during run time (like the states deseribed in the Con-
trolShell inodels described from the previous seetion). The text interface allows general nested data

structures as data {ypes. Continuous states are updated by the numerical integrator in DARDS

which requires the imodel builder to provide a mcethod for computing the derivatives of these states.
Jommands are thne tagged data structures sent by flight software, and outputs are time tagged
data structures sent to flight softwarc. There are various methods available for a Dsnen. modcl to

deline its functional interface. The most iimportant of these methods are those updating discrete
states and for calculating derivatives of continuous slates.

A Dsnr model file is read at run-time, and specifies the bodies that make up the spacecraft
as well as their masses and the types of hinges that join them together. Then, actuators and sensors
are specified, with the bodies they are on and their locations on those bodies. Configuration changes
can be made by editing start up files like this one, without recompiling any code. DsHir, also has
a Telinterface, which can be used to get information about the siimulation and the models therein.

5 Thc YA~ Configuratioo Manage nen 1oo)

AT source code control is carried outl using C'VS which is a third party tool based on RGS.
1t allows entire directories 1o be recursively ciccked inand out from a central “repository”, and
permits multiple developers to work on the same code shmultancously. 10 also has facilitics for
making new branches of the source tree, and merging these branches back onto the main trunk.

The ATBE subsystem is composed of severa tools, hoth Tibraries and exccutables, cach

10

of which are referred 1o as a module. The size and build time for the source code makes it
inconvenient. for ¢acly developer L () check out his/her own copy of the entire ATB 13 subsystem
software. Considering that a typical developer generally works 011 only one (11 two moclules al,
atime, a more flexible way 1,(| develop and use the ATT3E goftware has been developed. This
configuration management system collectively referred to as Yel A?/ oilier Make(YAM) system
consists of a layer of ’erl scripts ontop of CVS. The objective is to allow developers to choose
which A1'1315 inodules they wish to checkout for developt nent p urposes and which ones they simply
need avail able. 1A versions arca maintains released versions of cachy module in the directory
strueture shown in Figure b so that developers have til Module versions avail able for checkoul or
linking.

/some/pathNersions

Each program or library
v / \ \ in ATBF has a directory

. e s under Versions
Dview Dshell ds1-sc libSim
Multiple compiled versions
of each program are kept
for developersto lirik against
ds1-sc-R1-05 ds1-sc-R1-06 ds1-sc-R1-07 P g

E ach compiled version has
Makefile.athe which has a
. targe t for making links to
Makefile.atbe source executables and include files
code as necessary. fxecutables

for eat/l version are compiled
spare-sunos4 spare-sunos5 m68k-vxworks & v et plationns

Figure 5 Multiple compiled versions of cacli program arve maintained

When a developer waints to make changes to the code of one ormore modules, he/she must
first run a “setup” seript. 1'his seript will create an AT root directory for the developer, as
shown in figure 6. The developer then specifies which modules are 1o be actually checked out from
CVS (known as work modules) and which arce to be symbolically linked to a pre-cornpiled version
(known as link modules). Thisinformation is kept in a configuration file that allows the developer
to tell at a glance which modules thiey have clecked out, and which versions of link modules they
arc using. The developer’s $PATH eviviromnent variable and Makefiles are kept clean because links
to all AT13E exceutables exist in a single bin dircctory, andlinks o all A'TBE header files and
libraries are kept insingle include and lib directorics. Mulliple copies of cach module are kept
around so developers get new Ye'SiOng of link modules only when they are reacly.

Isachmodule has a Makefile.atbe file whichhas a inklinks target that will imake symbolic
links to the binaries and header files for the miodule. The Makefile .atbe file defines a clean
interface between the YAM build P rocedure and the odule, allowing the casy addition of externally
developed programs and libra vieg group as AR 110d yles. ‘Ihe ereation of a Makefile.atbe for
the M10d yle s all that is required to plug into the YAM build process and no modilications of the
code or thie mod ules’ Makefiles are required.

A Releasce direclory contains an ATRE_ROOT dit ectory for cach release of the entire Subygys-
tem. All modules in these releases are specified as lhnk mod ules, and make it clear which vers wons

11

/user/directory aer\ﬁfpers can work in

directory they want

atbe-uzerName An ATBE_ ROOT directory

is created with subdirectories
and an ATBE.con .
\ fig file

ATBE.config Makefile src etc Include ~ lib bin

ATBE .config indicates which / | \

modules are checked out /

work modules and which are ds1-sc spare-sunos4 spare-sunos5 me68k-vxworks

symieclinzlhy dirked divk umadtiles Directories and subdirectories of bin, include, lib, and

to the Versions directory ' etc contain only symbolic links, either to executables/files
in Versions or to checked out work modules under sr¢

Makefile.atbe source code spare-sunos4
Source code for each work module, such as dsi-sc in this example, is
checked ouf from CVS into its own subdirectory of src.7he developer modifies
and compiles the code as necessary. Makefile. athe is used here as well, to
make symbolic links from bin and other root subdirectories.

Figure G: Developers can select whichimod ules they want their own copies of

of thie miodules work together. This also provides a place to go to shimply ruiit a version of the
subsysteim. CVS tags are used Lo tag source code whennew versions of a 111()(1111(: coinc out and
w hen releases are inade, so releases are tracked by CVS as well.

6 Other 'Tools

In addition to the third party tools alrcady mentioned, ControlShell,1'cl/Tk a1l (1 CVS/RCS,there
arc several othier tools used in the simulator and testbed environment. A briel description of’ these
tools is given below.

Comnsole: Thie Console is an AT13H program for launching, running, monitoring, and gracefully
shutting dow n multiple processes, For example, it can start up a version of ACS flight sofl-
ware, 1503 busmanager {light software, and the AT'BES simulator. 14 provides a T'el corninand
line, and can send T'el cornmands L(1 any one of these processes, or to all processes. 1L pro-
vides a support library for the receiving Processes (like ACS) to handle 7'¢l comnands and
send back results, Thie console also has provisions for a clock, which drives all processes. So
all processes can be started or stopped at the same time, and take time steps of the se une
size (simulat ion thme) andfrequency (wall clock time). The console is highly configurable,
so the user can specily which subsyster ns and tools they wish to use in a start up seript, so
11() code needs to be re-compiled. Additionally, it con distribu te these processes to multiple
haosts/platforins by using rsh, and display windows and GUls 011 multiple monitors. Cormmin-
nicat ion between the console and the p rocessesinay take place using a niber of different
protocols.

1)view: Dvicw is a 31) spacccraft renderer developed for use with 1)shenL, 1tean 191111 on Severa
di flerent platforms including Silicon Graphics and Sun (using the public domain graphics

12

library MESA). Dvicw rcads aninput file similar to the 1)shiLL model file, which specifies
the same bodics that make up the spacecraft. Additionally, it knows about the geometry
and color {o render these bodies in. SO the same programcan 1)(1, and is, used for different
spacecraft without changing any code. During run time, 1)SHELL sends imessages to Dvicw
indicating the posit jon and attitude of the spacccraft. Messages that articulate bodies on the
spacecraft may also 1)(! sent, as well as “Uhruster-fired” messages which display a plume from
the specified thruster. A's with the console, a number of different commmunications protocols
arc available. On Silicon Graphics machines, there are options for doing fancier rendering
with lighting and texture maps.

libState: The text interface to state data used by I'cl commiands in 1)snp11, and the DS1simulator
is implemented using a library known as libState. This library defines C-f - template classes
which keep track of areference to a user variableand a text interface 1o that variable. This
allows a C/CH 4 prograr o access its variables as us ual, while ill having simple text “peck”
and (optional) “poke” access to thie data through stand ard text string gd/set mecthods of the
libState base class. A single data type inay have more than one kind of interface available
for it. For example, an integer may have both a numceric interface as we Il as anenumerat ed
keyword /valucinterface. Or, a double may have a standard interface, and one in which some
kind of units arc expected as well, automatically converting the number into imternal units
for computation. Since C+4 + templates are used, everything is donein a completely iy])c-safe
manncr. New interfaces may be added to existing or new data types by deflining parse and
print methods. However, special support for possibly nested data structures and both fixed
and variable len gih arrays is provided for convenience. Data structures can implemented as
a corn poun d 8roup of sub-states, allow ing access to cither individual fields of the structure
or the entire structure at once, without the need for spc(:ializcd])arsc/]n'intnmt]nods.Arrays
also allow access to cither individual el emienit s or the entire array. Future work may invalve
adding an automatic XDR interface, sorpegenandspecial code are not neededto saw! tliese
variables in a binary file or to send them over a network in binary. libStale works on both
Unix and VxWorks operating systems.

Stethoscope: Sicthoscope is a rcal-time plotting tool froin Real-"Time himovations, Inc. It can plot,
variables fron 1 VxWorks tasks as wellasUnixprocesses. Variables and ControlShell signals
cal)(* “installed” 1o Stethoscope at run tine, and mulliple Stethoscopes can be run on the
same target at the same time without interference. On VxWorks, stethoscope can look” at
the global memory directly so while running, a task doces not have to tell Stethoscope about
updates to variables. Slethoscope runs as a low-priority task to minimize iimpact to other
tasks.

NDDS: Network Dala Delivery Service (NDDS) is a fast, reliable, miessage passing tool also from
Real-Time Inmovations, Inc., with a very general APL Tt runs on both VxWorks and Unix
platforins and can pass messages between processes running on diflferent hosts. Fach host
runs an NDDS dacmon giving it @ domainnumber andlist of “peer” hosts. By having
domain numbers, inultiple NDIDS dacmons may run on the same hosts siimultancously without
interfering with cach other. Programsregister themselves as*])10(111(¢(:1s” and/or “consumers”
of messages. The same Program can hoth p roduce and consume multiple kinds of messages,
andthere may be multipleconsumers of the samcmessage.Consumers 1may beeither “polled”
00 “immediate”. Polled consumers exccute a callback for an incoming nessage only when
a poll function is called (so the p rog ram has control over when theinessage is handled).
Inmediate consumers exccute their callback as soon as a message arrives and no poll function

13

is needed. There are many other options for dealing with real-time issues available as well.
Data is passed using an XDR-like mechanisim, and new message data types can be added
using an rpegen-like program.

PC: 1P°C is the messaging system [8] used by DST flight software to pass messages between its
own tasks, and has capabilitics similar to those of NDDS. AT accepts 1I°C messages for
data from a 1553 bus model.

7 Conclusion

An adaptable spaceerafl simulation testbed is essential for the design, developiment, testing and
integration of antonomy flight software and hardwarc. The testbed needs to support the develop-
ment and test simulations which span a wide range of engincering platforms; functional and fidelity
models; test scenarios; and durations. This paper describes the reconfigurable ATBE siinulation
enviromuent. which supports the end-to-end development, integration and test needs for the an-
tonomy flight software for the New Millennimn Deep Space 1 project. A significant fraction ol the
effort, to date has been spent on the design of ATT13Es architecture so that it is flexible and adapt-
able to meet the needs of the autonomy flight software development. During the coming weeks the
AT effort will transition to support the large influx of new models into the spacecraft siimulation
enviromment, and support the developiment and implementation of real-time hardware-in-the-loop
simulations.

8 Acknow cdge ner ts

The rescarch deseribed in liis paper was performied at the Jet Propulsion Laboratory, California
Institute of Teclmology, under contract with the National Acronautics and Space Administration.

References

[1] 1. Vesq, AL Aljabri, C. Anderson, R. Connerton, R. Doyle, M. Hoffinan, and G. Man, “Spacccrafl
Autonomy in the New Millennium,” in 19t Annual AAS Guidance and Conlrol Conference,
(Breckenridge, CC - e 1996, Paper AAS-96-001

2~ Rayman and chman, “NASA’s Iirst New Millennium Deep-Space Technology Validation
\ £
Ilight,” in Sccond IAA International Conference on Low-Cost Planclary Missions, (Laurel,
MD), A . 1996. Paper TAA-1.0302.

3] S. Lisman, 1. Chang, and I°. Hadacgh, “Autonomous Guidance and Control for the New Mil-
£
lennimm DS-1 Spacecraft,” in AIAA Guidance, Navigation and Conlrol Conference, (San Diego,
CA), June 996 DPaper 96-3817.

[1] 1. Ricdel, S. Bhaskaran, S. S., W. Mollinan, and G. Null, “An Autonomous Optical Navigation
and Control System for Interplanctary Missions,” in Second 1AA International Conference on
Low- Cost Planclary Missions, (Laurel, MD), Apr. 1996. Paper TAA-1,-0506.

REFERIENCES

[6] A. Jainand G. Man, “Real Time Simulation of the Cassini Spacecraft Using 1) AI{'I’ S: Tunc-
tional Capabilities and Lthe Spat ial Algebra Algorithm,” indth A nnwal Conference on A erospace
Computational Control, Aug. 1992,

[6] G.Rodriguez, K. Kreutz-Delgado, and A. Jain, ‘A Spatial Operator Algebra for Manipulator
Modeling and Control,” The International Jo wrnal of Robolics Rescarch,vol .10, 1)]). 371-381,
Aug.1991.

[7] A . Jain, “Unificd I'or mulation of Dynamics for Serial Rigid Multibody Systems 7 Journal of
Guidance, Control and Dynamics; vol. 14, pp. b31542, May June 1 99 1.

3

8] R. Simmons, “Structured Cor itrol for Autonomous Robots,” TREEE Transacl ions on Robolics
[: ,

and A utomation,'eb. 1994,

